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The previous works on the motions of visco-plastic fluids in porous media are 
generalized in order to include the phenomenon of hysteresis. Only slowly 
varying motions are studied to any extent, when all inertial terms can be neglected 
without appreciable error. A general equation is deduced and some features of 
the motion are discussed. Simple particular cases without free or seepage surfaces 
are considered, when the fluid moves in the whole porous medium. A plane 
example points out the existence of different regions of motion during the 
variation of the heads in upper and lower water reservoirs. The necessity of 
further research on the flow of visco-plastic fluids through porous media is 
emphasized. 

1. Introduction 
The motion of Newtonian fluids in porous media is a problem that has been 

studied at length; no doubt it will continue to be so studied in the future. How- 
ever, some researches have revealed that, at small and very small velocities, 
there are fluids which move, in microporous media, slower than is required by 
Darcy’s law (e.g. Merkel 1956; Gheorghitza 1959). Thus arose the concept of 
‘initial gradient ’, which could describe satisfactorily the motion of these fluids 
(Polubarinova-Kotchina 1952, p. 28); therefore i t  was necessary to consider 
theoretically, as well as experimentally, the motion of these fluids. Five years 
ago a partial differential equation was given describing the motions with initial 
gradient in porous homogeneous media and it was emphasized that these motions 
are due to the rheological properties of fluids (Gheorghitza 1959). At  the same 
time experimental investigations were made on the motion of fluids exhibiting 
the phenomenon of initial gradient, i.e. on visco-plastic fluids (e.g. Sultanov 1960). 

It is well known that in capillary tubes the discharge of Newtonian liquids in 
steady flow is given by the Poiseuille formula, i.e. the discharge is proportional 
to the pressure gradient. This formula corresponds to Darcy’s law according to 
which the velocity of the filtration liquid is a linear function of the pressure 
gradient and vanishes only when the pressure gradient is zero. Similarly, i t  was 
observed that the curve e’ = F(a)  of ideal Bingham bodies (Persoz 1960, p. 24) 
has the same shape as the curve V = f ( I grad hl ) for some fluids moving in porous 
media, where V is the intensity of the filtration velocity, 

p being the pressure, y the specific weight of the liquid and the Oz-axis chosen 
along the upward vertical; these fluids received the name of ‘visco-plastic’ 
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(Sultanov 1960). More properly, these fluids can be named ‘ideal visco-plastic 
filtration fluids’. Later an attempt was made to describe the motion when the 
relation V = f ( /grad hi) is no longer linear; this case corresponds to real Bingham 
bodies (Gheorghitza 1961). 

Here we consider slow motions without free or seepage surfaces of incompres- 
sible filtration fluids exhibiting hysteresis, as do some thixotropic or antithixo- 
tropic fluids. 

2. Equations of motion 
The equation of motion of ideal visco-plastic filtration fluids can be written 

in the form 

where k is the filtration coefficient, m the porosity, K* the initial value of [grad hl , 
it being supposed that lgradhl > K* in the region of motion (Gheorghitza 1959); 
as is usual in underground hydrodynamics, i t  is assumed that from the total 
derivative dV/dt only the first term is of importance (Polubarinova-Kotchina 
1952, pp. 36-7). Denoting grad h by J and J, the unit vector of J with J = I JI, 
(2) becomes for steady motion v = p ( j )  J,, 

where F( J )  is a certain function (Gheorghitza 1961). It is then assumed that 
F( J )  is the same function irrespective of the sign of d V/dt. Now these equations 
describing the motion of visco-plastic fluids will be extended by taking as the 
relation between V and J 

(3) 

(4) I k(J)BV 0 for J < a+, 
mg iit - {-F+( J ) J ,  for Jmax > J > a+, 

v+--- 
when d V / d t  > 0, and 

J )  J, for Jmax > J 2 a_, v+--- for J < a_, 
when d V/dt < 0;  F+ and F- are positive functions. 

Here the inertial term is taken into account in the usual form (see, for example, 
Polubarinova-Kotchina 1952, pp. 36, 542). The positive function k( J )  is supposed 
to be known from experiment; nevertheless, the magnitude of k( J )  must be of 
the same order as that of the usual filtration coefficient. Then if we suppose that 
aV/at is bounded by a sufficiently small constant and consider the values of the 
filtration coefficient divided by rng, we can disregard the inertial terms of (4) 
and (5); the proof for Newtonian filtration liquids is given, for instance, by 
Polubarinova-Kotchina (1952, pp. 36-7), and for visco-plastic filtration fluids 
the proof can be equally easily given, following the same lines. In this way we 
can take instead of (4) and (5) the relations 

0 for J < a+, 
- F+( J )  J, for Jmax > J 2 a+, 
- F-( J )  Jo for Jmax > J 2 a_, 
0 for J < a_, 

where F+ and F- have the meaning given earlier. 
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The relations (4), (5) and (6) express the fact that the connexion between V 
J is no longer reversible: if the motion starts after a critical initial point is sur- 
passed and J grows monotonically till a certain value is reached and then im- 
mediately decreases monotonically, from 0 to Vmax we have one relation between V 
and J, and from Vmax back to 0 we have another relation between the same 
variables; i.e. V = P+( J) when dV/dt > 0 and V = P!( J) when d V/dt < 0. From 
the above formulation it follows that a- is a certain function of J m a x  but no effort 
is made here to deduce theoretically this function. 

Taking into account the continuity equation, div V = 0,  we shall obtain from 
(6), denoting the Laplacian operator by A, the equation 

2F(JgradhI) Jgradhl Ah 

’(Igrad ‘I)] grad h .grad (]grad h[ 2, = 0, (7)  I grad h I 
in the region where the fluid is moving; 3’ will have the index + or -, but 
P’(lgradh1) means the derivative of P with respect to the variable lgradhl. 

J’Inax 

V 

0 a- a+ 

J 
FIGURE 1. ‘ Loading’ and ‘ unloading’ loop for typical visco-plastic fluid in porous medium. 
J is the magnitude of the filtration pressure gradient, V the magnitude of the filtration 
velocity. 

Observe that (6) gives two filtration coefficients in the neighbourhood of the 
J-axis: P; ( J) when the speed begins to increase from zero, and PI_ (J) when the 
speed vanishes after a maximum speed is reached. Figure 1 shows the general 
aspect for the motion in a definite point. The ‘loading’ curve is represented by 
the symbol + but the ‘unloading’ one by - ; the maximum value of J is denoted 
by X .  

3. Boundary conditions 
In  order to solve equation (7)  we must know the boundary conditions. If S is 

the frontier of the domain filled by the porous medium, we shall have, if we adopt 
the hypotheses of underground hydrodynamics, on a supply surface 

h = const., 

ah/& = 0. 
and on an impervious surface 

t 9) 
18-2 
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In  the case of a medium homogeneous by parts, let i a n d j  be the indices for 
two homogeneous neighbouring media and Sij their common surface. Denoting 
h, = h ( M )  for M E  D,, we shall have from the condition of the continuity of 
pressures 

but from the condition of the continuity of normal velocities, 
hi = hj on Xii, (10) 

lgrad h,l-l &( lgrad h,l) ahi/& = lgrad hi/ -l4( \grad hjl) ahj/&; (1 1) 
here F, and I$ are to be replaced by &+ and 4.+ when d V l d t  > 0 and by 4- and $.- 
when d V / d t  < 0. 

As in the case of motions with initial gradient, here also domains where the 
fluid does not move can exist in porous media. Let Do be the sum of these domains 
and So its frontier towards the domains where there is motion. In Do we have then 
a filtration fluid a t  rest and in this domain the function h, (h, = h(M) for M E  Do) 
must satisfy a partial differential equation which depends on the physical 
mechanism causing the inhibition of flow below the initial pressure gradient. 
At present this equation is not known, and for the time being it will be supposed 
to be Laplace's equation. The continuity of pressure on So requires generally that 

h, = hi on AS',. (12) 

lgradhl = a, on X,, (13) 

If h, satisfies equation (7) it  goes without saying that this condition is fulfilled. 
We also have 

at points where Do is being eroded ( +) or extended ( - ), although lgradhl may 
sometimes have an intermediate value a t  points where So is stationary. 

An essential difference with respect to the cases previously studied (Gbeor- 
ghitza 1959,1961) is the possibility here of the existence of a domain D+ different 
from D-, i.e. the fluid may move in one domain when d V / d t  > 0 and in another 
domain when d V / d t  < 0. 

4. Motions in homogeneous media 
Let us write equation (7) when we have a homogeneous medium as 

F'( IgradhJ) = A,( IgradhI -a,)%, (14) 
where A+, A_,  a,, a_, n, and n- are positive constants. 

Let us suppose that on the positive part of the curve V = F+( lgrad hl) we come 
slowly to the point Igradhl = X and from that point we diminish jgradhl 
steadily. Then between the constants A+, A_,  a+, a_, n+ and n- we have the 

(15) 
relation 

From (14) and (7) it  follows that 
A+(X - a + ) m +  = A - ( S  -a_)"-. 

2( jgradhl -a )  Ah+ [((n- 1) /grad hl +a)/Igradh12]grad h.grad (lgrad hI2) = 0, 
(16) 

where a must be replaced by a+ and by a_, respectively. Equation (16) becomes 
Darcy's equation when a = 0 and n = 1. But when a = 0 and n + 1, then the 
initial gradient vanishes, and we have for h the equation 

(17) 2 jgradhI2Ah+(n- 1)gradh.grad(IgradhI2) = 0. 



The case of linear variation of V with lgradhl, both when dV/d t  > 0 and 

(19) 

(20 )  

d V/dt < 0, is obtained as a particular case of (14) for n, = 1 : 

I?* (/grad h] ) = A,( /grad hl - a,). 

A+(X  -a+) = A-(X - a-), 

With the same notation for X, we have instead of (15) the relation 

from which it follows that if a+ > a_, then A+ > A- and conversely, when 
a+ < a_, then A+ < A_;  if a+ = a_, then, evidently, A+ = A_. The equation for 
h will be in this case 

2( ]grad hl -a )  Ah + a ]grad hl-2 [grad h. grad (]grad h] 71 = 0,  (21) 

and this equation becomes the well-known equation Ah = 0 when a, = 0. 

5. Motions without Do 
Let us now consider some simple motions when Do is missing, F ,  is given by 

(19), and the solution of the problem can be written exactly. 
(a)  First consider the one-dimensional motion when we know the values of h 

at the ends of a layer of length L. Denoting h(0) = h, and h(L)  = hII, in order to 
fix our ideas, let us suppose that at the initial instant h, = hII, and that h, then 
slowly increases but h,, is left unchanged (which amounts to saying that the 
pressure grows a t  one end of the layer, but the pressure at the other end is fixed). 
So long as (h, - h,,) L-1 < a+, we have no motion in the porous medium, but when 
(h, - h,,) > a+ L, motion begins to take place, the velocity being given by the 

( 2 2 )  
relation u = A+[(h, - h,,) L-l -a+]. 

Assume that h, increases to a certain maximum value, and then, h,, being left 
constant, h, starts to decrease. Then the velocity also begins to decrease, and it 
will be given by 

for (h,-h,,)L-l > a_. 
If we denote by S the cross-sectional area of the porous medium, normal to the 

direction of motion, and by T+ the time taken for hI to increase from the value 
h,, + a+ L to the value X L ,  and by T- - T+ the time interval in which h, decreases 
to h,, + a- L, we shall have a general formula for the volume of fluid which passes 

u = AJh,  - h,,) L-l - a_],  (23) 
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through the layer; denoting (h, -hII) L-l by G,(t) according as to whether we are 
in the interval (0, T+) or in the interval (T+, T!), this formula is 

V = S [A+IOF' G+( t )  dt + A- 11; G-( t )  dt + T+(A- a- - A+ a+) - A- a- T- . 
(24) 

( b )  Another simple case is that of a plane motion having central symmetry, 
Let us denote h, = h(r,) and hII = h(rI I ) ,  where rII > rI and h, > h,, throughout 
the motion. Starting from the condition of incompressibility written in the form 

1 

q/2nr = -A(dh/dr+a), (25) 

where q is the discharge of fluid passing through unit thickness of the porous 
medium, we have a t  any instant 

+ corresponding to the period when dV/dt > 0 and - to the period when 
d V/dt  < 0. If we know the difference h, - h,, as a function oft, we have qk = qi(t), 
and the whole volume of fluid which passes through the layer may be easily 
computed. 

( c )  For motion with spherical symmetry, denoting similarly h, = h(r,) and 
h,, = h(rII), where rII > rI and h, > hII, we start in a like manner from the relation 

(27) Q/4nr2 = - A(dh/dr +a) ,  

and after integration and determination of constants it follows that 

6. Example in which D ,  =k D- 
Let us consider now a simple example in which D+ + D-. The porous medium 

fills the lower half-plane 0 > O > -n minus the half-circle r < R, and the radii 
8 = 0 and 8 = -n represent supply surfaces. The supply surface O = 0 is in 
contact with a basin B, and the other supply surface is in contact with a basin B,. 
If H (  > 0) is the difference between the fluid levels in B, and B,, then on O = 0 
we can take h = 0 and then on O = -n we have h = H .  The specified half-circle 
being filled by an impervious medium, the boundary conditions satisfied by the 
function h are then 

0 for r > R ,  0 = 0  
H for r > R ,  0 = - n '  I h = (  

ah/& = 0 for r = R, -n < 8 < 0. 

The function h which satisfies these conditions and equation (21) is 

h = - H8n-l 

and is a harmonic function. The fluid speed is 

V = A[H(nr)-l-  a]. 
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The fluid does not move during the first period in the domain in which 

r > H(Tu+)-~ = R,, 

and in the period when d V/dt < 0, the fluid does not move for 

r > H(na-)-l = R-, 

and as we assumed that a- =j= a+, it follows that, for the same H ,  R+ + R-. 
Consequently, for the discharge we shall have the expressions 

&+(t) = A,[Hn-lln (R+ R-l) - a+(R+ - R)], 
&-(t) = AJHn-l In (R- R-l) - u-(R- - R)]. and 

In particular, if we suppose that H grows linearly with time, starting from 
the value zero, so that 

it follows that the fluid begins to move only at the instant 

H(t)  = Nt, 

t = To = n-Ra, N-l. 

If the increase proceeds till the time t = T+ ( > To), at that instant the fluid moves 
in the domain 0 > 8 > -n-, R+ > r > R, where 

R+ = NT+(n-a+)--l. 

Supposing now that H decreases linearly from the maximum value reached 
to zero, i.e. 

H will vanish a t  the instant 

H(t)  = NT+-M(t-T,), for t > T,, 

T* = T+(NM-l+ I), 

but the motion will vanish before then, namely at the instant 

t* = T* - n-Ra-(M)-I. 

This example generalizes a simple motion of Newtonian filtration liquids 
(Polubarinova-Kotchina 1952, p. 219). 

7. Concluding remarks 
The above considerations are valid only for sufficiently small speeds, that is for 

speeds in the range corresponding to the linear motions of Newtonian filtration 
fluids. If the speed exceeds a certain value we shall have another relation between 
V and J instead of equation ( B ) ,  and i t  is known that in this case the inertial terms 
are no longer negligible, and later the motion can become turbulent. 

At present some points in the theory of visco-plastic filtration liquids are still 
obscure. For instance, we do not know the exact equation satisfied by h in Do. 
Moreover, there are not enough suitable experimental investigations to establish 
the validity of one relation rather than of another; only careful experiments 
performed on the motion of visco-plastic fluids in porous media could establish 
the validity of the law (14) for n =l= 1 or of the law (19). 
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The results obtained here can be generalized. In  the case of inhomogeneous 
media, when, for instance, A ,  a and n from (14) depend generally on position, 
one could obtain a quasi-linear partial differential equation with variable 
coeficients. 

0 0 a ,  

FIGURE 2. Effect of successive increases 
and decreases in gradient. 

J J 
FIGURE 3. Possible behaviour of 

porous medium. 

In  this paper the compressibility of the fluid and of the porous medium were 
neglected. If these phenomena are taken into account, then one obtains for h an 
equation containing also a term with a2/at2, such as T. Oroveanu and H. Pascal 
(Oroveanu 1963, p. 58) obtained for the linear motions of Newtonian fluids. 

Visco-plastic fluids in porous media could exhibit other special features. It has 
been supposed above that the gradient of the pressure grows monotonically to 
a given value and then decreases monotonically. But if we have successive 
increases and decreases in the gradient of pressure, then a t  each decrease or 
increase yet another curve V = H(lgradh1) is traced out, as pointed out in 
figure 2. 

Lastly, let us mention that visco-plastic fluids could exhibit in some cases a 
variation of velocity, even when the pressure on the surface of the porous medium 
is constant (for instance, the case represented in figure 3). 

The author would like to thank Dr R. Herczynski for valuable criticism and 
helpful suggestions. 
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